Steklov Eigenvalues of Nearly Spherical Domains
نویسندگان
چکیده
We consider Steklov eigenvalues of three-dimensional, nearly-spherical domains. In previous work, we have shown that the are analytic functions domain perturbation parameter. Here, compute first-order term asymptotic expansion, which can explicitly be written in terms Wigner 3-jsymbols. analyze expansion and prove isoperimetric result that, if l is a square integer, volume-normalized l-th eigenvalue stationary for ball.
منابع مشابه
On Principal Eigenvalues for Periodic Parabolic Steklov Problems
LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...
متن کاملSloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues
This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...
متن کاملTwo-Parameter Eigenvalues Steklov Problem involving the p-Laplacian
We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.
متن کاملNearly spherical vesicles in an external flow
We theoretically analyze a vesicle with small excess area, which is immersed in an external flow. A dynamical equation for the vesicle evolution is obtained by solving the Stokes equation with suitable boundary conditions imposed on the membrane. The equation has solutions corresponding to different types of motion, such as tank-treading, tumbling and trembling. A phase diagram reflecting the r...
متن کاملEigenvalues of Collapsing Domains and Drift Laplacians
By introducing a weight function to the Laplace operator, Bakry and Émery defined the “drift Laplacian” to study diffusion processes. Our first main result is that, given a Bakry–Émery manifold, there is a naturally associated family of graphs whose eigenvalues converge to the eigenvalues of the drift Laplacian as the graphs collapse to the manifold. Applications of this result include a new re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Control and Optimization
سال: 2022
ISSN: ['0363-0129', '1095-7138']
DOI: https://doi.org/10.1137/21m1411925